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Abstract

This paper describes the recognition of implicit serialization due to coarse-grain,

synchronous communication and demonstrates the conversion to asynchronous

communication for the exchange of boundary condition information in the Thin-

Layer Navier Stokes 3-Dimensional Multi Block (-i'LNS3DMB) code. The imple-

mentation details of using asynchronous communication is provided including

buffer allocation, message identification, and barrier controL The IBM SP2 was

used for the tests presented.

Introduction

A coarse-grained parallel version of Thin-Layer Navier Stokes 3-Dimensional Multi Block (TLNS3DMB)

was developed by Dr. Veer Vatsa and Bruce Wedan [1]. The goal was to develop a parallel and scalable

version with minimal code changes to the sequential code. Since the code is multi-block, it was structured

to readily incorporate coarse-grain parallelism, wherein one or more blocks of the global grid are assigned

to each processor of a workstation cluster or parallel computer. More than one block may reside on a pro-

cessor, but coarse granularity implies that a block cannot be split among multiple processors.

The developed code was written to run in either a serial or distributed environment. The user chooses

between two underlying message passing libraries, either Message Passing Interface (MPI) or Parallel Vir-

tual Machine (PVM). The primary considerations of the parallelization task were minimal code changes to

the original sequential version, and the capability to generate sequential, distributed, and parallel versions

from one code using simple compiler directives.

The parallel implementation of TLNS3DMB maintained almost all of its original features, yet yielded signif-

icant performance speedups when used in a high-performance environment. Linear speedups are

approachable if the biggest blocks are partitioned to allow good load (i.e., data) balancing. The distributed

version displays a near-linear speedup with the number of processors on the IBM SP2, Intel Paragon, and

a heterogeneous cluster of workstations (SGI, SUN, etc.).

Load Balancing and Scalability

Program performance depends largely on the effective mapping of blocks to the processors. The more
load balanced the workload among the processors, the smaller the idle time for nodes with smaller blocks.

This results in a reduction of the overall time and memory requirements. To assist the TLNS3DMB user in

achieving the most effective use of the resources, a program called __r has been developed and is

available in the TLNS3DMB executables directory (i.e., tlns3d-dist/RS6K).

The MaDDer provides information on the grid block sizes and the effectiveness of using a varying number

of processors for the user's problem. The Mapper requires the standard TLNS3D-MB input file as input,

and reads the associated grid file for the problem. The following example illustrates the use of Mapper and
the results for the 8block case:

cd tlns3d-dist/8block

../RS6K/mapper < m6w8b.inp

8-block m6 wing

formatted grid from m6w8b.gr.fmt

Grid Block Sizes

block imax jmax kmax total

1 137 25 17 58225

2 137 25 17 58225

3 57 25 17 24225



4 57 25

5 137 25

6 137 25

7 57 25

8 57 25

nodes maxpts minpts

1 329800 329800

2 164900 164900

3 116450 106675

4 82450 82450

5 82450 58225

6 58225 48450

7 58225 24225

8 58225 24225

17

17

17

17

17

24225

58225

58225

24225

24225

avgpts %avgdev megawords

329800 .000 18.469

164900 .000 9.234

109933 3.952 6.521

82450 .000 4.617

65960 14.072 4.617

54966 7.904 3.261

47114 27.762 3.261

41225 41.237 3.261

exetime

1 000

5OO

353

25O

250

177

177

177

8-block m6 wing

formatted grid from m6w8b.gr.fmt

Grid Block Sizes

block imax jmax kmax total

1 97 25 17 41225

2 97 25 17 41225

3 97 25 17 41225

4 97 25 17 41225

5 97 25 17 41225

6 97 25 17 41225

7 97 25 17 41225

8 97 25 17 41225

nodes maxpts minpts avgpts %avgdev
..............................

1 329800 329800 329800 .000

2 164900 164900 164900 .000

3 123675 82450 109933 16.667

4 82450 82450 82450 .000

5 82450 41225 65960 30.000

6 82450 41225 54966 33.333

7 82450 41225 47114 21.428

8 41225 41225 41225 .000

megawords

18 469

9 234

6 926

4 617

4 617

4 617

4.617

2.309

exetime

1.000

.500

.375

.250

.250

.250

.250

.125

The Mapper's estimates closely match actual performance as demonstrated with the 8 block case and 8
even block case. Note, slight deviations in performance for nodes 4 through 7 of the 8 even block case, are
due system background noise (i.e., the job mix affecting the High Performance Switch on the IBM SP2).

This case has eight blocks, four with 58225 points and four with 24225 points. If only one processor is
used, then over 18 megawords would be required, and the execution time would be 1.00 (no reduction as
a result of parallelization). If two processors are used, the memory requirements per node would be half
and the execution time half (.500). When using 4 nodes, each node would process a 58225 and 24225
block (as shown by maxpts), and therefore have an execution time of .250. For 5 nodes, the maximum
number of points by at least one block remains 82450 (58225+24225). For 6 nodes, the largest work load
(maxpts) is 58225, and therefore the execution time is .177. As can be seen, there is no advantage of
using more than six nodes for this test, as the memory requirements and execution time are unaffected.
For an 8 even block case, the estimated execution time (exetime) decreases near linearly as expected.
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As larger problems were tried, the performance degraded. A 32 block patched grid test case, this time with

uneven sized blocks, was also used for performance tests. The Mapper's output, as shown completely in
Appendix A, accounts for the estimated execution time based on the block sizes. The results of the execu-

tion of this 32 block case for 50/50 cycles, along with the Mapper's execution estimate follows.

Sync Ideal Actual

(Mapper) (sync/2525)

1 2525.00 1.000 1.000

2 1431.00 0.500 0.567

4 840.00 0.250 0.333

8 557.00 0.125 0.221

16 410.00 0.062 0.162

32 356.00 0.036 0.141

Synchronous Communication

An analysis of the program's scalability performance indicated the communication bottleneck for the

exchange of boundary conditions. The communications concerning the boundary condition within

TLNS3DMB are contained within two routines: bcflow and bcturb. The communication was performed with

synchronous communication (i.e., send/recv pairs). The processor issuing the send blocks until the associ-

ated processor completes the receive. The following is an outline of communication sequence of the rou-
tine bcflow.

/* ... declarations */

/* begin outer loop on the

do i000 ibloc = l,nbloc

ns = nseg(ibloc)

blocks for interface blocks */

/* begin outer loop on the segments */

do i00 iseg = l,ns

< ... code to compute cell attributes based on block and segment >

/* get ghost cell variables from source block */

if (src.eq.me) then /* (nodes(nblocs).eq.myrank) */

< get ghost cell values at block interfaces and interior cuts >

if (dst.ne.me) call MPI_Send /* (nodes(ibloc).ne.myrank) */
endif

/* update ghost cell variables on target block */

if (dst.eq.me) then /* (nodes(ibloc).eq.myrank) */

/*receive ghost cell variables from node if not already local */

if (src.ne.me) call MPI_Recv /* (nodes(nblocs).ne.myrank)

< ... code to compute pressure at ghost cells >

endif

*/

100 continue

i000 continue
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The following graph depicts the communication exchange for the eight (uneven block) case on eight nodes

using synchronous SENDs/RECVs. The communication graph was created with the

(VT) [3]. The Parallel Programming Environment's Visualization Tool (VT) is designed to show graphically

the performance and characteristics of an application program and also to act as an on-line monitor.

Figure 3. Synchronous communication exchange for eight uneven block

Although not obvious, the communication pattern establishes an im01icit seauentialization. The sequential-

ization is caused by sends blocking until the matching receives are posted and the pattern of exchange for

this program. See Chapter 4 of Using MPI [2] for a complete description of sequentialization. In TLNS3D,

because the time to perform the calculations and the determination of whether to send/receive a message

is small, the overhead should be minor for the entire process. However, as shown by the above communi-
cation pattern, the time does accumulate.

Asynchronous Communication

One method to overcome the delay associated with implicit sequentialization is asynchronous communica-

tion. Generally the send and receive operations in asynchronous communication place no constraints on

each other in terms of completion, and thereby enable overlap of computation. In a typical implementa-

tion, the nonblocking receives (RECVs) are posted by the receiving nodes prior to the associated sends

from the sending nodes. Then, the sends are issued, followed by a barrier (e.g., MPI_WAITALL) to ensure

all send/recv pairs have completed. This method allows the intermediate calculations to be computed in a

natural progression not waiting for the receive.

For bcflow, asynchronous communications could have been performed over the segment (inner loop) or
over the block (outer loop). Optimizing over the block loop, provides nonblocking communications over a

larger number of cells, and offers a greater potential. The outline of the asynchronous code over the entire
block for bcflow is shown below.



Post mceives

do 999 ibloc = l,nbloc

do 99 iseg = l,ns

< ... code to compute cell

if (dst.eq.me) then

if (src.ne.me) then

call MPI_IRecv

endif

endif

99 continue

999 continue

Send d_a

do i000 ibloc = l,nbloc

do i00 iseg = l,ns

< ... code to compute

if (src.eq.me) then

attributes based on block and segment >

if

< get

call

endif

endif

I00 continue

1000 continue

cell attributes based on block and segment >

(dst.ne.me) then

ghost cell values at

MPI_Send

block

WaitAII

call mpi_waitall

Compute calcul_ions

do i001 ibloc = l,nbloc

do i01 iseg = l,ns

< ... code to compute

if (dst.eq.me) then

if (src.ne.me)

< ... code

endif

endif

i01 continue

i001 continue

cell attributes

then

to compute pressure

interfaces and interior cuts>

based on block and segment >

at ghost cells >

Asynchronous Conditions

In order to use asynchronous communication, the order of the calculations being sent must be order inde-

pendent (i.e., loop independent). In the case of bcflow, this means converting from a loop containing a

SEND/RECV pair, to a separate loop containing calculations and a SEND. The underlying condition is that

the values being sent for subsequent loop iterations are independent of the information received. This is

necessary if multiple SENDs can be posted without intermediate RECVs.



Loop

CO

send

recv

Cl

end loop

C2

Loop

irecv

end loop

Loop

CO

send

end loop

wait all

Loop

Cl

end loop

C2

Flow 1 Flow 2

If the received information in Flow 1 (above) affects the calculation CO of the next loop iteration, then there

is a loop dependence, and asynchronous communication cannot be performed as shown in Flow 2.

Implementation Issues

Asynchronous communication requires the handling of several factors: the allocation and management of

message buffers, the identification of messages (message tags), and the use of a barrier.

In synchronous communication, a blocking send waits until the associated receive completes. This

approach ensures that the contents of the message buffer remains intact until the operation is complete.

For asynchronous communication, the user must ensure that the operation is completed before the mes-

sage buffer is reused. Since the nonblocking receives are posted first, a buffer for each message is
needed.

The number and size of the asynchronous messages, and therefore buffers, is problem dependent. For

TLNS3DMB, an associated program called the Sizer was written to create a parameter file defining the

workspace needed for a given problem. See URL

http://hpccp-www.larc, nasa.gov:80/-dan aJT6_load.html

for more detail. The Sizer program has been augmented to accommodate the asynchronous buffer sizes,

and in turn represent them as constants (parameters) in the generated parameter file.

Because TLNS3DMB is designed to handle multiple blocks per nodes, it is often the case that a process

will send multiple messages to another processor over the block in which messages are being changed.

In this event, it is necessary for the receiving process to distinguish between messages. The concept of a

"message tag" (message identification) is often used. A tag is an arbitrary nonnegative integer to used to

restrict receipt of the message (sometimes also called "message type").

Additionally, the use of a barrier is required to ensure all processes have completed exchanging mes-

sages. This requires knowing the number of messages being sent by each individual processor. The fol-

lowing is an outline of the asynchronous approach including the message tags and barrier call.

Postreceives

isegtag=0 /* counter for every cell to make unique

isegnum=0 /* count number of message received */

do 999 ibloc = l,nbloc

do 99 iseg = l,ns

message tag */



< code for cell attributes (i.e., imap array) indexed by iseg, ibloc

example: nblocs = imap(7,iseg,ibloc) >

isegtag=isegtag+l /* increment tag tp from unique message id */

< ... code to compute cell attributes based on block and segment >

if (dst.eq.me) then

if (src.ne.me) then

isegnum=isegnum+l /* increment offset into temporary buffer */

call MPI_IRecv(recv_buffer(isegnum*maxbufsize),

.... TAG_FLOW+isegtag ..... ireq(isegnum),ierr)

endif

endif

99 continue

999 continue

Send d_a

isegtag=0 /* counter for every cell to make unique message tag */

do i000 ibloc = l,nbloc

do i00 iseg = l,ns

isegtag=isegtag+l /* increment tag to form unique message id */

< ... code for cell attributes; i.e., imap(n,iseg, ibloc) >

< ... code to compute cell attributes based on block and segment >

if (src.eq.me) then

if (dst.ne.me) then

< get ghost cell values at block interfaces and interior cuts>

call MPI_Send(buffer ..... TAG_FLOW+isegtag .... )

endif

endif

100 continue

i000 continue

Wait All

/* barrier to wait until all messages to be received are processed */

call mpi_waitall(isegnum, ireq,status_array, ierr)

Compute calcul_ions

/* after mpi_waitall, all message have been exchanged */

isegnum=0 /* count messages received for offset into received buffer */

do i001 ibloc = l,nbloc

do 101 iseg = l,ns

< ... code for cell attributes; i.e., imap(n,iseg,ibloc) >

< ... code to compute cell attributes based on block and segment >

if (dst.eq.me) then

if (src.ne.me) then

isegnum=isegnum+l /* increment offset */

do i=l,msgsize

/* copy values from temp. buffer to array based on offset */

wk2d(i)=buffer(isegnum*maxbufsize+idana)

enddo

< o.. code to compute pressure at ghost cells >

endif

endif

i01 continue

1001 continue



The following is the communication exchange for the eight (uneven block) case on eight nodes using asyn-

chronous SENDs/RECVs. The pattern shows that the SENDs are sent when encountered thereby prevent-

ing any sequentialization. Each node blocks with a barrier, until all messages are received.

Figure 4. Asynchronous communication exchange for eight uneven block

For larger size problems, asynchronous communication clearly outperforms synchronous communication.

32-block Asynchronous Results

Sync Async

1 2525.00 -

2 1431.00 1383.00

4 840.00 741.00

8 557.00 412.00

16 410.00 246.00

32 356.00 179.00

Ideal

1 O0

0 500

0 250

0 125

0 062

0 036

Summary

In summary, the boundary exchange for TLNS3DMB was presented using both synchronous and asyn-

chronous communications. An explanation of the necessary conditions (data independence) and the

method (buffers and tags) to convert from isochronous to asynchronous was described. As expected with

larger problems and larger number of nodes, the asynchronous communication performed better.
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Appendix A. Complete Mapper Output for a 32-block Case

The following is the complete Mapper output for a 32 (uneven) block case. The first table represents the
grid block sizes. Based on the block sizes, the Mapper distributes the blocks achieving the best possible
workload balance. The column _ represents the largest number of points held by any single block for
the given workload. That number is divided by the "maxpts for 1-node" to determine the projected execu-
tion time (i.e., the _ column). The "exetime" value in the second table estimates the ideal execution
time based on the workload distributed to the associated number of processors.

It should be noted, that adding an additional node does not always re-distribute the workload to reduce the
maxpts. Therefore, adding additional nodes does notalways decrease the projected execution time.

0:32-block m6 wing

0:formatted grid from m6w32b.gr.fmt

0:

0:Grid Block Sizes

0:block imax jmax kmax total

0: ......................

0: 1 49 13 17 10829

0: 2 49 13 17 10829

0: 3 49 13 17 10829

0: 4 49 13 17 10829

0: 5 49 15 17 12495

0: 6 49 15 17 12495

0: 7 49 15 17 12495

0: 8 49 15 17 12495

0: 9 49 Ii 17 9163

0: i0 49 Ii 17 9163

0: ii 49 Ii 17 9163

0: 12 49 ii 17 9163

0: 13 49 13 17 10829

0: 14 49 13 17 10829

0: 15 49 13 17 10829

0: 16 49 13 17 10829

0: 17 49 13 17 10829

0: 18 49 13 17 10829

0: 19 49 13 17 10829

0: 20 49 13 17 10829

0: 21 49 Ii 17 9163

0: 22 49 ii 17 9163

0: 23 49 ii 17 9163

0: 24 49 ii 17 9163

0: 25 49 15 17 12495

0: 26 49 15 17 12495

0: 27 49 15 17 12495

0: 28 49 15 17 12495

0: 29 49 13 17 10829

0: 30 49 13 17 10829

0: 31 49 13 17 10829

0: 32 49 13 17 10829

0:

0:nodes maxpts minpts avgpts

0: .......................

0: 1 346528 346528 346528

0: 2 173264 173264 173264

%avgdev megawords exetime

.......................

.000 19.406 1.000

.000 9.703 .500

]0
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4 152
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